谷歌浏览器插件
订阅小程序
在清言上使用

Aggregation-induced emission luminogens reveal cell cycle-dependent telomerase activity in cancer cells

National science review(2021)

引用 44|浏览12
暂无评分
摘要
Telomerase acts as an important biomarker for tumor identification, and synthesizes telomeric repeats at the end of chromosome telomeres during the replicative phase of the cell cycle; thus, the expression level of telomerase changes as the cell cycle progresses. TERT mRNA expression and telomerase activity were significantly increased in over 80% of human cancers from tissue specimens. Although many efforts have been made in detecting the activity of TERT mRNA and active telomerase, the heterogeneous behavior of the cell cycle was overlooked, which might affect the accuracy of the detection results. Herein, the AIEgen-based biosensing systems of PyTPA-DNA and Silole-R were developed to detect the cellular level of TERT mRNA and telomerase in different cell cycles. As a result, the fluorescence signal of cancer cells gradually increased from G0/G1, G1/S to S phase. In contrast, both cancer cells arrested at G2/M phase and normal cells exhibited negligible fluorescence intensities. Compared to normal tissues, malignant tumor samples demonstrated a significant turn-on fluorescence signal. Furthermore, the transcriptomics profiling revealed that tumor biomarkers changed as the cell cycle progressed and biomarkers of CA9, TK1 and EGFR were more abundantly expressed at early S stage. In this vein, our study presented advanced biosensing tools for more accurate analysis of the cell-cycle-dependent activity of TERT mRNA and active telomerase in clinical tissue samples. AIEgen-based biosensing system was developed to detect telomerase in different cell cycles and the fluorescence signal of cancer cells increased from G0/G1 to S phase. While, cancer cells arrested at G2/M phase and normal cells exhibited the negligible signal.
更多
查看译文
关键词
cell cycle,TERT mRNA,telomerase activity,AIEgens,biomarkers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要