Uniqueness of weakly reversible and deficiency zero realizations of dynamical systems

Mathematical Biosciences(2021)

引用 2|浏览0
暂无评分
摘要
A reaction network together with a choice of rate constants uniquely gives rise to a system of differential equations, according to the law of mass-action kinetics. On the other hand, different networks can generate the same dynamical system under mass-action kinetics. Therefore, the problem of identifying “the” underlying network of a dynamical system is not well-posed, in general. Here we show that the problem of identifying an underlying weakly reversible deficiency zero network is well-posed, in the sense that the solution is unique whenever it exists. This can be very useful in applications because from the perspective of both dynamics and network structure, a weakly reversible deficiency zero (WR0) realization is the simplest possible one. Moreover, while mass-action systems can exhibit practically any dynamical behavior, including multistability, oscillations, and chaos, WR0 systems are remarkably stable for any choice of rate constants: they have a unique positive steady state within each invariant polyhedron, and cannot give rise to oscillations or chaotic dynamics. We also prove that both of our hypotheses (i.e., weak reversibility and deficiency zero) are necessary for uniqueness.
更多
查看译文
关键词
Dynamical systems in biology,Systems biology,Networks,Chemical kinetics in thermodynamics and heat transfer,Kinetics in biochemical problems
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要