Visualization of a hexagonal born nitride monolayer on an ultra-thin gold film via reflected light microscopy

NANOTECHNOLOGY(2022)

引用 3|浏览0
暂无评分
摘要
Hexagonal boron nitride (h-BN) is an important insulating layered material for two-dimensional heterostructure devices. Among many applications, few-layer h-BN films have been employed as superior tunneling barrier films. However, it is difficult to construct a heterostructure with ultra-thin h-BN owing to the poor visibility of flakes on substrates, especially on a metallic surface substrate. Since reflectance from a metallic surface is generally high, a h-BN film on a metallic surface does not largely influence reflection spectra. In the present study, a thin Au layer with a thickness of similar to 10 nm deposited on a Si substrate with a thermally grown SiO2 was used for visualizing h-BN flakes. The thin Au layer possesses conductivity and transparency. Thus, the Au/SiO2/Si structure serves as an electrode and contributes to the visualization of an ultra-thin film according to optical interference. As a demonstration, the wavelength-dependent contrast of exfoliated few-layer h-BN flakes on the substrate was investigated under a quasi-monochromatic light using an optical microscope. A monolayer h-BN film was recognized in the image taken by a standard digital camera using a narrow band-pass filter of 490 nm, providing maximum contrast. Since the contrast increases linearly with the number of layers, the appropriate number of layers is identified from the contrast. Furthermore, the insulating property of a h-BN flake is examined using a conductive atomic force microscope to confirm whether the thin Au layer serves as an electrode. The tunneling current through the h-BN flake is consistent with the number of layers estimated from the contrast.
更多
查看译文
关键词
h-BN, 2D materials, insulating film, optical interferometry, C-AFM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要