谷歌浏览器插件
订阅小程序
在清言上使用

TP53-mediated miR-2861 promotes osteogenic differentiation of BMSCs by targeting Smad7

Xian-Pei Zhou, Qi-Wei Li, Zi-Zhen Shu,Yang Liu

MOLECULAR AND CELLULAR BIOCHEMISTRY(2021)

引用 3|浏览2
暂无评分
摘要
Bone defect seriously affects the quality of life. Meanwhile, osteogenic differentiation in BMSCs could regulate the progression of bone defect. Transcription factors are known to regulate the osteogenic differentiation in BMSCs. The study aimed to investigate the detailed mechanism by which TP53 regulates the osteogenic differentiation. To study bone defect in vitro, BMSCs were isolated from spinal cord injury rats. CCK-8 assay was applied to test the cell viability. The mineralized nodules in BMSCs was tested by alizarin red staining. Meanwhile, TUNEL staining and flow cytometry were performed to test the cell apoptosis. mRNA expression was tested by qRT-PCR. Starbase and dual-luciferase reporter assay were used to predict the downstream mRNA of miR-2861. Moreover, western blot was applied to detect the protein expressions (TP53 and Smad7). BMSCs were successfully isolated from rats. The expressions of miR-2861 were significantly upregulated in osteogenic medium, compared with growth medium. MiR-2861 inhibitor significantly decreased the levels of OCN, ALP, BSP, and Runx2 in BMSCs. In addition, miR-2861 inhibitor notably inhibited the mineralized nodules, viability, and induced the apoptosis of BMSCs. Smad7 was identified to be the downstream target of miR-2861, and knockdown of Smad7 notably reversed miR-2861 inhibitor-induced inhibition of osteogenic differentiation and promotion of apoptosis in BMSCs. Moreover, miR-2861 was transcriptionally regulated by TP53 in BMSCs. TP53-meidiated miR-2861 promotes osteogenic differentiation of BMSCs by targeting Smad7. Thereby, our research might provide new methods for bone defect treatment.
更多
查看译文
关键词
Bone defect, miR-2861, TP53, Smad7, BMSCs
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要