High-Throughput Flow-Through Direct Immunoassays for Targeted Bacteria Detection

ANALYTICAL CHEMISTRY(2021)

引用 8|浏览11
暂无评分
摘要
Regulatory authorities require analytical methods for bacteria detection to analyze large sample volumes (typically 100 mL). Currently only the Membrane Filtration and the Most Probable Number assays analyze such large volumes, while other assays for bacteria detection (ELISA, lateral flow assays, etc.) typically analyze volumes 1000 times smaller. This study describes flow-through direct immunoassays (FTDI), a new methodology for the targeted detection of bacteria in liquid samples of theoretically any volume. Flow-through direct immunoassays are performed in fluid-permeable microwells (e.g., wells of a filter well plate) that have a membrane on their bottom where the bacteria are trapped before their detection using a direct immunoassay. Two versions of FTDI assays for the detection of E. coli in 10 mL of sample were developed. A rapid FTDI assay that can be completed in less than 2.5 h can detect E. coli bacteria in levels down to 17 CFU/mL, and an ultrasensitive FTDI assay that employs an additional bacteria culturing step to boost the sensitivity can detect E. coli bacteria in levels lower than 1 CFU/mL in less than 5.5 h. All the steps of the assays, including the immunoassay steps, the culturing step, and the analytical signal measurement step are performed inside the well plate to decrease the chance of contamination and ensure a safe, easy process for the user. The assays were assessed and validated in tap water, river water, and apple juice samples, and the results suggests that the assays are robust, precise, and accurate. When the assays are performed in 96-well filter plates, a filter well plate vacuum manifold and a multichannel peristaltic pump are also used, so multiple samples can be analyzed in parallel to allow highthroughput analysis of samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要