Tracing the Evolution of Human Gene Regulation and Its Association with Shifts in Environment.

Genome biology and evolution(2021)

引用 6|浏览6
暂无评分
摘要
As humans populated the world, they adapted to many varying environmental factors, including climate, diet, and pathogens. Because many of these adaptations were mediated by multiple noncoding variants with small effects on gene regulation, it has been difficult to link genomic signals of selection to specific genes, and to describe the regulatory response to selection. To overcome this challenge, we adapted PrediXcan, a machine learning method for imputing gene regulation from genotype data, to analyze low-coverage ancient human DNA (aDNA). First, we used simulated genomes to benchmark strategies for adapting PrediXcan to increase robustness to incomplete data. Applying the resulting models to 490 ancient Eurasians, we found that genes with the strongest divergent regulation among ancient populations with hunter-gatherer, pastoralist, and agricultural lifestyles are enriched for metabolic and immune functions. Next, we explored the contribution of divergent gene regulation to two traits with strong evidence of recent adaptation: dietary metabolism and skin pigmentation. We found enrichment for divergent regulation among genes proposed to be involved in diet-related local adaptation, and the predicted effects on regulation often suggest explanations for known signals of selection, for example, at FADS1, GPX1, and LEPR. In contrast, skin pigmentation genes show little regulatory change over a 38,000-year time series of 2,999 ancient Europeans, suggesting that adaptation mainly involved large-effect coding variants. This work demonstrates that combining aDNA with present-day genomes is informative about the biological differences among ancient populations, the role of gene regulation in adaptation, and the relationship between genetic diversity and complex traits.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要