Antibiofilm Effects of Epigallocatechin Gallate Against Proteus mirabilis Wild-Type and Ampicillin-Induced Strains

FOODBORNE PATHOGENS AND DISEASE(2022)

引用 2|浏览1
暂无评分
摘要
Proteus mirabilis is an opportunistic pathogen associated with nosocomial infections and foodborne diseases. The resistance and biofilm formation of P. mirabilis have been a great concern. In this study a multidrug-resistant P. mirabilis strain 012 was exposed to a lethal dose of ampicillin (10 mg/mL, 2.5-fold minimal bactericidal concentration) for 24 h at 37 degrees C. After resuscitation and isolation, five variant isolates were selected and subjected to ampicillin induction by repeatedly streaking on ampicillin-containing plates (10 mg/mL) for at least three times. In biofilm formation assays by using crystal violet staining, we found that the variant strains had enhanced biofilm-forming abilities. (-)-epigallocatechin-3-gallate (EGCG) at a minimum inhibitory concentration (MIC) (256 mu g/mL) significantly reduced the biofilm formation of all variant strains and the wild-type strain (p < 0.01). Sub-MIC of EGCG (128 mu g/mL) suppressed the biofilms of wild-type and two variants. However, it stimulated the biofilms of the other three variants. The antibiofilm effects of EGCG against the wild-type strain were further confirmed by confocal laser scanning microscopy. Scanning electron microscopy revealed that EGCG induced variants to form more fibrous structures. Our results revealed that a lethal dose of antibiotic exposure increased antibiotic resistance and biofilm formation of P. mirabilis. EGCG may be used as a promising antibiofilm agent to prevent the P. mirabilis biofilm formation in the food industry. However, the sub-MIC of EGCG is not effective and will not be applied.

更多
查看译文
关键词
Proteus mirabilis, epigallocatechin gallate, biofilm, antibiotic induction, antimicrobial resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要