Cellular responses to reactive oxygen species can be predicted on multiple biological scales from molecular mechanisms

biorxiv(2018)

引用 1|浏览1
暂无评分
摘要
Catalysis using iron-sulfur clusters and transition metals can be traced back to the last universal common ancestor. The damage to metalloproteins caused by reactive oxygen species (ROS) can completely inhibit cell growth when unmanaged and thus elicits an essential stress response that is universal and fundamental in biology. We develop a computable multi-scale description of the ROS stress response in Escherichia coli . We show that this quantitative framework allows for the understanding and prediction of ROS stress responses at three levels: 1) pathways: amino acid auxotrophies, 2) networks: the systemic response to ROS stress, and 3) genetic basis: adaptation to ROS stress during laboratory evolution. These results show that we can now develop fundamental and quantitative genotype-phenotype relationships for stress responses on a genome-wide basis.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要