Nanometer-Scale Force Profiles of Short Single- and Double-Stranded DNA Molecules on a Gold Surface Measured Using a Surface Forces Apparatus

LANGMUIR(2021)

引用 3|浏览23
暂无评分
摘要
Using a surface forces apparatus (SFA), we have studied the nanomechanical behavior of short single-stranded and partially and fully double-stranded DNA molecules attached via one end to a self-assembled monolayer on a gold surface. Our results confirm the previously proposed "mushroom-like" polymer structure for surface-attached, single-stranded DNA at low packing density and a "brush-like" structure for the same construct at higher density. At low density we observe a transition to "rigid rod" behavior upon addition of DNA complementary to the surface-attached single strand as the fraction of molecules that are double-stranded increases, with a concomitant increase in the SFA-observed thickness of the monolayer and the characteristic length of the observed repulsive forces. At higher densities, in contrast, this transition is effectively eliminated, presumably because the single-stranded state is already extended in its "brush" state. Taken together, these studies offer insights into the structure and physics of surface-attached short DNAs, providing new guidance for the rational design of DNA-modified functional surfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要