谷歌浏览器插件
订阅小程序
在清言上使用

Rho and F-actin Self-Organize Within an Artificial Cell Cortex.

CB/Current biology(2021)

引用 12|浏览13
暂无评分
摘要
The cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division1,2. During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed “cortical excitability”3–7. In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho8,9. These feedback loops are proposed to serve as a mechanism for amplification of active Rho signaling at the cell equator to support furrowing during cytokinesis, while also maintaining flexibility for rapid error correction in response to movement of the mitotic spindle during chromosome segregation10. In this paper, we develop an artificial cortex based on Xenopus egg extract and supported lipid bilayers (SLBs), to investigate cortical Rho and F-actin dynamics11. This reconstituted system spontaneously develops two distinct dynamic patterns: singular excitable Rho and F-actin waves and non-traveling oscillatory Rho and F-actin patches. Both types of dynamic patterns have properties and dependencies similar to the cortical excitability previously characterized in vivo9. These findings directly support the longstanding speculation that the cell cortex is a self-organizing structure and present a novel approach for investigating mechanisms of Rho-GTPase-mediated cortical dynamics. Highlights An artificial cell cortex comprising Xenopus egg extract on a supported lipid bilayer self-organizes into complex, dynamic patterns of active Rho and F-actin We identified two types of reconstituted cortical dynamics – excitable waves and coherent oscillations Reconstituted waves and oscillations require Rho activity and F-actin polymerization
更多
查看译文
关键词
Neural Excitability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要