谷歌浏览器插件
订阅小程序
在清言上使用

The Effect of KOH Activation and Ag Nanoparticle Incorporation on Rice Husk-Based Porous Materials for Wastewater Treatment.

Chemosphere(2022)

引用 9|浏览14
暂无评分
摘要
Major agricultural solid waste, rice husk (RH)-based mesoporous materials were prepared by potassium hydroxide (KOH) treatment of RH and RH hydrochar (RHH) produced at 180 degrees C with 20 min reaction time. In this study, RH was treated with three different methods: RH activation by KOH (KOH-RH), RH activation by KOHaqueous silver (Ag)-shell nanoparticle (AgNP) incorporation followed calcination at 550 degrees C for 2 h (AgNP-KOH-RH) and hydrothermally carbonized RH activation by KOH (KOH-RHH). The main objective of this study was to determine the effect of KOH activation with different synthesis approaches and compare the characterization results of RH based porous material to identify the potential adsorbent application for wastewater treatment. Therefore, after activation in different methods, all interactive properties such as elemental, chemical, structural, morphological, and thermal analyses were investigated comprehensively for all samples. The crystallinity peak intensity around 22 degrees lambda at the angle of diffraction of 2 theta confirmed the presence of silica, higher stability of the material, and removal of organic components during the KOH activation. AgNP-KOH-RH and KOH-RHH presented high porosity on the outer surface. The presence of negligible volatile matter in KOHRHH by TGA demonstrated the decomposition of organic compound. Very high ratio of aromatic carbon and lignin content by FTIR and XPS analysis in both AgNP-KOH-RH and KOH-RHH showed these two samples have improved stability. Very high negative surface charge (zeta potential) in AgNP-KOH-RH (-43.9 mV) and KOHRHH (-43.1 mV) indicated the enhanced water holding capacity. Surface area for all experimented porous materials has been enhanced after KOH activation, where KOH-RHH demonstrated the maximum surface area
更多
查看译文
关键词
AgNP modified rice husk,Calcination,Hydrochar,KOH activation,Porous materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要