PACAP-PAC1 Signaling Regulates Serotonin 2A Receptor Internalization

FRONTIERS IN ENDOCRINOLOGY(2021)

引用 4|浏览10
暂无评分
摘要
Mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP) display psychomotor abnormalities, most of which are ameliorated by atypical antipsychotics with serotonin (5-HT) 2A receptor (5-HT2A) antagonism. Heterozygous Pacap mutant mice show a significantly higher hallucinogenic response than wild-type mice to a 5-HT2A agonist. Endogenous PACAP may, therefore, affect 5-HT2A signaling; however, the underlying neurobiological mechanism for this remains unclear. Here, we examined whether PACAP modulates 5-HT2A signaling by addressing cellular protein localization. PACAP induced an increase in internalization of 5-HT2A but not 5-HT1A, 5-HT2C, dopamine D-2 receptors or metabotropic glutamate receptor 2 in HEK293T cells. This PACAP action was inhibited by protein kinase C inhibitors, beta-arrestin2 silencing, the PACAP receptor PAC1 antagonist PACAP(6-38), and PAC1 silencing. In addition, the levels of endogenous 5-HT2A were decreased on the cell surface of primary cultured cortical neurons after PACAP stimulation and were increased in frontal cortex cell membranes of Pacap(-/-) mice. Finally, intracerebroventricular PACAP administration suppressed 5-HT2A agonist-induced head twitch responses in mice. These results suggest that PACAP-PAC1 signaling increases 5-HT2A internalization resulting in attenuation of 5-HT2A-mediated signaling, although further study is necessary to determine the relationship between behavioral abnormalities in Pacap(-/-) mice and PACAP-induced 5-HT2A internalization.
更多
查看译文
关键词
pituitary adenylate cyclase-activating polypeptide (PACAP), internalization, hallucination, beta-arrestin, G protein-coupled receptor (GPCR), serotonin 2A receptor (5-HT2A)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要