谷歌浏览器插件
订阅小程序
在清言上使用

GCC2 as a New Early Diagnostic Biomarker for Non-Small Cell Lung Cancer

CANCERS(2021)

引用 7|浏览27
暂无评分
摘要
Simple Summary Lung cancer, including non-small cell lung cancer, is the leading cause of cancer-related death worldwide. A better prognosis is associated with early diagnosis of lung cancer patients. Although annual screening guidelines for lung cancer are recommended, using various tools such as chest X-ray, low-dose computed tomography, and positron emission tomography, these screening procedures are expensive and difficult to repeat. They are also invasive and have a high risk of radiation exposure. Therefore, a low-risk, convenient diagnostic method using liquid biopsy and biomarkers is required for the early diagnosis of lung cancer. The newly proposed biomarker GCC2 was identified through proteomic analysis of exosomes secreted from lung cancer cell lines. GCC2 expression levels in peripheral blood of the patients showed high specificity and sensitivity in early lung cancer, demonstrating that our novel exosomal biomarker GCC2 can greatly contribute to improving the diagnosis of lung cancer patients, even though it has been tested in only a few pilot studies. No specific markers have been identified to detect non-small cell lung cancer (NSCLC) cell-derived exosomes circulating in the blood. Here, we report a new biomarker that distinguishes between cancer and non-cancer cell-derived exosomes. Exosomes isolated from patient plasmas at various pathological stages of NSCLC, NSCLC cell lines, and human pulmonary alveolar epithelial cells isolated using size exclusion chromatography were characterized. The GRIP and coiled-coil domain-containing 2 (GCC2) protein, involved in endosome-to-Golgi transport, was identified by proteomics analysis of NSCLC cell line-derived exosomes. GCC2 protein levels in the exosomes derived from early-stage NSCLC patients were higher than those from healthy controls. Receiver operating characteristic curve analysis revealed the diagnostic sensitivity and specificity of exosomal GCC2 to be 90% and 75%, respectively. A high area under the curve, 0.844, confirmed that GCC2 levels could effectively distinguish between the exosomes. These results demonstrate GCC2 as a promising early diagnostic biomarker for NSCLC.
更多
查看译文
关键词
exosomes,non-small cell lung cancer,GCC2,biomarkers,early detection,liquid biopsy,cancer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要