Insights into how poly aluminum chloride and poly ferric sulfate affect methane production from anaerobic digestion of waste activated sludge

SCIENCE OF THE TOTAL ENVIRONMENT(2022)

引用 14|浏览7
暂无评分
摘要
ABSTR A C T Poly aluminum chloride (PAC) and poly ferric sulfate (PFS) are widely used in wastewater treatment and sludge dewatering, resulting in their amounts being accumulated substantially in waste activated sludge (WAS). Till now, however, little information about their influence on WAS digestion is available. This work therefore aims to provide insights into how PAC and PFS affect sludge anaerobic digestion. The experimental results showed that PFS's inhibition to methane production was much severer than PAC, in control reactor (0 mg Al or Fe /g TSS), the maximum cumulative methane production was 152.99 +/- 7.18 mL/g VSS, when flocculants concentra-tion increased to 30 mg Al/g TSS or 30 mg Fe/g TSS, the yields decreased to 129.54 +/- 6.18 mL/g VSS and 89.52 +/- 4.82 mL/g VSS respectively. Mechanism explorations exhibited that protein in WAS could bond with flocculants, which would inhibit protein bioconversion. It was also observed that the apparent activation energy (AAE) of or-ganic solubilisation of PAC and PFS-contained sludge were increased by 38.58% and 18.67% respectively. Mean-while, compared to the PFS, PAC led to more serious suppression of hydrolysis and acidogenesis processes, with propionic acid used as substrate, PFS inhibit methanogenesis more severely than PAC. Illumina MiSeq se-quencing analyses showed that the number of sulfate-reducing bacteria (SRB) enriched obviously in PFS reactor. The results revealed that although PFS reduced methane production more severely than PAC, the reduction was mainly enforced by the activity of SRB but not organic enmeshment. Furthermore, PAC severely suppresses acetotrophic methanogens but PFS depress hydrogenotrophic methanogenesis microorganism mainly. Addition-ally, malodor control and dewaterability enhancement of digested sludge can be realized with PAC existence. The finding obtained in this study would provide insights into the PFS or PAC-involved sludge anaerobic digestion system and might support the important implication for further manipulate WAS treatment in the future. (c) 2021 Published by Elsevier B.V.
更多
查看译文
关键词
Sludge treatment, Anaerobic digestion, Methane production, Poly aluminum chloride, Poly ferric sulfate
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要