谷歌浏览器插件
订阅小程序
在清言上使用

Genomic mapping of DNA-repair reaction intermediates in living cells with engineered DNA structure-trap proteins

Methods in enzymology(2021)

引用 0|浏览6
暂无评分
摘要
Diverse DNA structures occur as reaction intermediates in various DNA-damage and -repair mechanisms, most of which results from replication stress. We harness the power of proteins evolutionarily optimized to bind and "trap" specific DNA reaction-intermediate structures, to quantify the structures, and discern the mechanisms of their occurrence in cells. The engineered proteins also allow genomic mapping of sites at which specific DNA structures occur preferentially, using a structure-trapping protein and ChIP-seq- or Cut-and-Tag-like methods. Genome-wide identification of sites with recurrent DNA-damage intermediates has illuminated mechanisms implicated in genome instability, replication stress, and chromosome fragility. Here, we describe X-seq, for identifying sites of recurrent four-way DNA junctions or Holliday-junctions (HJs). X-seq uses an engineered, catalysis-defective mutant of Escherichia coli RuvC HJ-specific endonuclease, RuvCDefGFP. X-seq signal indicates sites of recombinational DNA repair or replication-fork stalling and reversal. We also describe methods for genomic mapping of 3'-single-stranded DNA ends with SsEND-seq, in E. coli. Both methods allow genomic profiling of DNA-damage and -repair intermediates, which can precede genome instability, and are expected to have many additional applications including in other cells and organisms.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要