谷歌浏览器插件
订阅小程序
在清言上使用

High-Performance Oxide-Based p-n Heterojunctions Integrating p-SnOx and n-InGaZnO

ACS APPLIED MATERIALS & INTERFACES(2021)

引用 4|浏览32
暂无评分
摘要
The fabrication of oxide-based p-n heterojunctions that exhibit high rectification performance has been difficult to realize using standard manufacturing techniques that feature mild vacuum requirements, low thermal budget processing, and scalability. Critical bottlenecks in the fabrication of these heterojunctions include the narrow processing window of p-type oxides and the charge-blocking performance across the metallurgical junction required for achieving low reverse current and hence high rectification behavior. The overarching goal of the present study is to demonstrate a simple processing route to fabricate oxide-based p-n heterojunctions that demonstrate high on/off rectification behavior, a low saturation current, and a small turn-on voltage. For this study, room-temperature sputter-deposited p-SnOx and n-InGaZnO (IGZO) films were chosen. SnOx is a promising p-type oxide material due to its monocationic system that limits complexities related to processing and properties, compared to other multicationic oxide materials. For the n-type oxide, IGZO is selected due to the knowledge that postprocessing annealing critically reduces the defect and trap densities in IGZO to ensure minimal interfacial recombination and high charge-blocking performance in the heterojunctions. The resulting oxide p-n heterojunction exhibits a high rectification ratio greater than 10(3) at +/- 3 V, a low saturation current of similar to 2 x 10(-10) A, and a small turn-on voltage of similar to 0.5 V. In addition, the demonstrated oxide p-n heterojunctions exhibit excellent stability over time in air due to the p-SnOx with completed reaction annealing in air and the reduced trap density in n-IGZO.
更多
查看译文
关键词
p-type oxide, SnOx, p-n junction, diode, heterojunction, InGaZnO (IGZO)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要