A missense in HSF2BP causing Primary Ovarian Insufficiency affects meiotic recombination by its novel interactor C19ORF57/MIDAP

bioRxiv (Cold Spring Harbor Laboratory)(2020)

引用 2|浏览11
暂无评分
摘要
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with 3 cases of POI, we identified the candidate missense variant S167L in HSF2BP , an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse, compared to a new HSF2BP knock-out mouse showed that it behaves as a hypomorphic allele. HSF2BP-S167L females show reduced fertility with small litter sizes. To obtain mechanistic insights, we identified C19ORF57/MIDAP as a strong interactor and stabilizer of HSF2BP by forming a higher-order macromolecular structure involving BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L mutation showed a strongly decreased expression of both MIDAP and HSF2BP at the recombination nodules. Although HSF2BP-S167L does not affect heterodimerization between HSF2BP and MIDAP, it promotes a lower expression of both proteins and a less proficient activity in replacing RPA by the recombinases RAD51/DMC1, thus leading to a lower frequency of cross-overs. Our results provide insights into the molecular mechanism of two novel actors of meiosis underlying non-syndromic ovarian insufficiency. Summary Felipe-Medina et al. describe a missense variant in the meiotic gene HSF2BP in a consanguineous family with Premature Ovarian Insufficiency, and characterize it as an hypormorphic allele, that in vivo impairs its dimerization with a novel meiotic actor, MIDAP/ C19ORF57, and affect recombination at double-strand DNA breaks.
更多
查看译文
关键词
meiotic recombination,hsf2bp,primary ovarian insufficiency,novel interactor c19orf57/midap
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要