谷歌浏览器插件
订阅小程序
在清言上使用

Comparing Synthetic Refocusing to Deconvolution for the Extraction of Neuronal Calcium Transients from Light Fields

NEUROPHOTONICS(2022)

引用 2|浏览24
暂无评分
摘要
Significance: Light-field microscopy (LFM) enables fast, light-efficient, volumetric imaging of neuronal activity with calcium indicators. Calcium transients differ in temporal signal-to-noise ratio (tSNR) and spatial confinement when extracted from volumes reconstructed by different algorithms. Aim: We evaluated the capabilities and limitations of two light-field reconstruction algorithms for calcium fluorescence imaging. Approach: We acquired light-field image series from neurons either bulk-labeled or filled intracellularly with the red-emitting calcium dye CaSiR-1 in acute mouse brain slices. We compared the tSNR and spatial confinement of calcium signals extracted from volumes reconstructed with synthetic refocusing and Richardson-Lucy three-dimensional deconvolution with and without total variation regularization. Results: Both synthetic refocusing and Richardson-Lucy deconvolution resolved calcium signals from single cells and neuronal dendrites in three dimensions. Increasing deconvolution iteration number improved spatial confinement but reduced tSNR compared with synthetic refocusing. Volumetric light-field imaging did not decrease calcium signal tSNR compared with interleaved, widefield image series acquired in matched planes. Conclusions: LFM enables high-volume rate, volumetric imaging of calcium transients in single cell somata (bulk-labeled) and dendrites (intracellularly loaded). The trade-offs identified for tSNR, spatial confinement, and computational cost indicate which of synthetic refocusing or deconvolution can better realize the scientific requirements of future LFM calcium imaging applications. (c) The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
更多
查看译文
关键词
light-field microscopy,calcium imaging,fluorescence imaging,deconvolution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要