Mining in Logarithmic Space

Computer and Communications Security(2021)

引用 12|浏览12
暂无评分
摘要
ABSTRACTBlockchains maintain two types of data: Application data and consensus data. Towards long-term blockchain scalability, both of these must be pruned. While a large body of literature has explored the pruning of application data (UTXOs, account balances, and contract state), little has been said about the permanent pruning of consensus data (block headers). We present a protocol which allows pruning the blockchain by garbage collecting old blocks as they become unnecessary. These blocks can simply be discarded and are no longer stored by any miner. We show that all miners can be light miners with no harm to security. Our protocol is based on the notion of superblocks, blocks that have achieved an unusually high difficulty. We leverage them to represent underlying proof-of-work without ever illustrating it, storing it, or transmitting it. After our pruning is applied, the storage and communication requirements for consensus data are reduced exponentially. We develop new probabilistic mathematical methods to analyze our protocol in the random oracle model. We prove our protocol is both secure and succinct under an uninterrupted honest majority assumption for 1/3 adversaries. Our protocol is the first to achieve always secure, always succinct, and online Non-Interactive Proofs of Proof-of-Work, all necessary components for a logarithmic space mining scheme. Our work has applications beyond mining and also constitutes an improvement in state-of-the-art superlight clients and cross-chain bridges.
更多
查看译文
关键词
blockchains, proof-of-work, logspace mining, superlight clients, NIPoPoWs, superblocks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要