The GT factor ZmGT-3b mediates growth–defense tradeoff by regulating photosynthesis and defense response1

biorxiv(2021)

引用 1|浏览7
暂无评分
摘要
Plant growth and development face constant threat from various environmental stresses. Transcription factors (TFs) are crucial for maintaining balance between plant growth and defense. Trihelix TFs display multifaceted functions in plant growth, development, and responses to various biotic and abiotic stresses. Here, we explore the role of a trihelix TF, ZmGT-3b, in regulating the growth–defense tradeoff in maize ( Zea mays ). ZmGT-3b is primed for instant response to Fusarium graminearum challenge by implementing a rapid and significant reduction of its expression to suppress seedling growth and enhance disease resistance. ZmGT-3b knockdown led to diminished growth, but improved disease resistance and drought tolerance in maize seedlings. In ZmGT-3b knockdown seedlings, the chlorophyll content and net photosynthetic rate were strongly reduced, whereas the contents of major cell wall components, such as lignin, were synchronically increased. Correspondingly, ZmGT-3b knockdown specifically downregulated photosynthesis-related genes, especially ZmHY5 (encoding a conserved central regulator of seedling development and light responses), but synchronically upregulated genes associated with secondary metabolite biosynthesis and defense-related functions. ZmGT-3b knockdown induced defense-related transcriptional reprogramming and increased biosynthesis of lignin without immune activation. These data suggest that ZmGT-3b is a regulator of plant growth–defense tradeoff that coordinates metabolism during growth-to-defense transitions by optimizing the temporal and spatial expression of photosynthesis- and defense-related genes. One-sentence summary ZmGT-3b regulates photosynthesis activity and synchronically suppresses defense response.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要