Single-stranded nucleic acid sensing and coacervation by linker histone H1

biorxiv(2021)

引用 3|浏览1
暂无评分
摘要
The linker histone H1 is the most abundant group of eukaryotic chromatin-binding proteins. The mechanism underlying the diverse physiological functions of H1 remains unclear. Here we used single-molecule fluorescence and force microscopy to observe the behavior of H1 on DNA under different tensions. Unexpectedly, we found that H1 coalesces around nascent ssDNA. Molecular dynamics simulations revealed that multivalent and transient interactions between H1 and ssDNA mediate their phase separation. We further showed that longer and unpaired nucleic acids result in more viscous, gel-like H1 droplets. Finally, we imaged H1 puncta in cells under normal and stressed conditions and observed that RPA and H1 occupy separate nuclear regions. Overall, our results provide a new perspective to understanding the role of H1 in genome organization and maintenance. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要