NanoDam identifies novel temporal transcription factors conserved between the Drosophila central brain and visual system

biorxiv(2021)

引用 9|浏览2
暂无评分
摘要
Temporal patterning of neural progenitors is an evolutionarily conserved strategy for generating neuronal diversity. Type II neural stem cells in the Drosophila central brain produce transit-amplifying intermediate neural progenitors (INPs) that exhibit temporal patterning. However, the known temporal factors cannot account for the neuronal diversity in the adult brain. To search for new temporal factors, we developed NanoDam, which enables rapid genome-wide profiling of endogenously-tagged proteins in vivo with a single genetic cross. Mapping the targets of known temporal transcription factors with NanoDam identified Homeobrain and Scarecrow (ARX and NKX2.1 orthologues) as novel temporal factors. We show that Homeobrain and Scarecrow define middle-aged and late INP temporal windows and play a role in cellular longevity. Strikingly, Homeobrain and Scarecrow have conserved functions as temporal factors in the developing visual system. NanoDam enables rapid cell type-specific genome-wide profiling with temporal resolution and can be easily adapted for use in higher organisms. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要