Histone H2B.V demarcates strategic regions in the Trypanosoma cruzi genome, associates with a bromodomain factor and affects parasite differentiation and host cell invasion

biorxiv(2021)

引用 1|浏览3
暂无评分
摘要
Histone variants play a crucial role in chromatin structure organization and gene expression. Trypanosomatids have an unusual H2B variant (H2B.V) that is known to dimerize with the variant H2A.Z generating unstable nucleosomes. Previously, we found that H2B.V protein is enriched in nonreplicative life forms of Trypanosoma cruzi, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among parasite life forms. Here, we performed the first genome-wide profiling of histone localization in T. cruzi using replicative and nonreplicative life forms, and we found that H2B.V was preferentially located at the edges of divergent switch regions, which encompass putative transcriptional start regions; at some tDNA loci; and between the conserved and disrupted genome compartments, mainly at trans-sialidase, mucin and MASP genes. Remarkably, the chromatin of nonreplicative forms was depleted of H2B.V-enriched peaks in comparison to replicative forms. Interactome assays indicated that H2B.V associated specifically with H2A.Z, bromodomain factor 2, nucleolar proteins and a histone chaperone, among others. Parasites expressing reduced H2B.V levels were associated with higher rates of parasite differentiation and mammalian cell infectivity. Taken together, H2B.V demarcates critical genomic regions and associates with regulatory chromatin proteins, suggesting a scenario wherein local chromatin structures associated with parasite differentiation and invasion are regulated during the parasite life cycle. Author Summary Trypanosomatids have to adapt to different environmental conditions, changing their morphology, gene expression and metabolism. These organisms have many unique features in terms of gene expression regulation. The genomic organization includes polycistronic regions with the absence of well-defined transcription start sites. In T. brucei , histone variants mark the start and ending sites of transcription; however, little is known about whether these proteins change their genome location, expression levels and interactors along life forms and what the impact is of these changes on parasite differentiation and infection. In T. cruzi, the causative agent of Chagas disease, we previously found that the histone variant of H2B is enriched in nonreplicative and infective forms, suggesting that this variant may contribute to the differences in chromatin structure and global transcription rates observed among these life forms. Here, we aimed to go one step further and performed the first histone ChIP-seq analysis in T. cruzi , in which we found that H2B.V was enriched at divergent strand switch regions, some tDNA loci and other critical genomic regions associated with T. cruzi genome compartments. We found that H2B.V interacts with a bromodomain factor, suggesting an intricate network involving chromatin acetylation around H2B.V enriched sites. Moreover, parasites expressing reduced H2B.V levels were associated with higher rates of differentiation and mammalian cell infectivity. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要