谷歌浏览器插件
订阅小程序
在清言上使用

Scalable Fabrication of 3D Structured Microparticles Using Induced Phase Separation

ACS Nano(2021)

引用 2|浏览5
暂无评分
摘要
Microparticles with defined shapes and spatial chemical modification can enable new opportunities to interface with cells and tissues at the cellular scale. However, conventional methods to fabricate shaped microparticles have trade-offs between the throughput of manufacture and precision of particle shape and chemical functionalization. Here, we achieved scalable production of hydrogel microparticles at rates of greater than 40 million/hour with localized surface chemistry using a parallelized step emulsification device and temperature-induced phase-separation. The approach harnesses a polymerizable polyethylene glycol (PEG) and gelatin aqueous-two phase system (ATPS) which conditionally phase separates within microfluidically-generated droplets. Following droplet formation, phase separation is induced and phase separated droplets are subsequently crosslinked to form uniform crescent and hollow shell particles with gelatin functionalization on the boundary of the cavity. The gelatin localization enabled deterministic cell loading in sub nanoliter-size crescent-shaped particles, which we refer to as nanovials, with cavity dimensions tuned to the size of cells. Loading on nanovials also imparted improved cell viability during analysis and sorting using standard fluorescence activated cell sorters, presumably by protecting cells from shear stress. This localization effect was further exploited to selectively functionalize capture antibodies to nanovial cavities enabling single-cell secretion assays with reduced cross-talk in a simplified format. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要