INF2-mediated actin filament reorganization confers intrinsic resilience to neuronal ischemic injury
Nature communications(2021)
Abstract
During early stages of ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation – conditions that trigger neuronal swelling -- cause actin filaments to undergo a rapid and extensive reorganization within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines, with relatively little F-actin in the dendrite shaft. However, beginning <5 min after incubation of neurons with NMDA, F-actin depolymerizes within dendritic spines and polymerizes into long, stable filament bundles within the dendrite shaft and soma. A similar “actinification” of the somatodendritic compartment occurs after oxygen/glucose deprivation in vitro , and in mouse brain after photothrombotic stroke in vivo . Following transient, sub-lethal NMDA exposure these actin changes spontaneously reverse within 1-2 hours. A combination of Na+, Cl-, water, and Ca2+ entry are all necessary, but not individually sufficient, for induction of actinification. Spine F-actin depolymerization is also required. Actinification is driven by activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons more vulnerable to NMDA-induced membrane leakage and cell death, and formin inhibition markedly increases ischemic infarct severity in vivo . These results show that ischemia-induced actin filament reorganization within the dendritic compartment is an intrinsic pro-survival response that protects neurons from death induced by swelling.
### Competing Interest Statement
The authors have declared no competing interest.
MoreTranslated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined