Developmental dynamics of the neural crest-mesenchymal axis in creating the thymic microenvironment

biorxiv(2021)

引用 0|浏览8
暂无评分
摘要
The thymic stroma is composed of epithelial and non-epithelial cells that collectively provide separate microenvironments controlling the homing of blood-born precursors to the tissue, and their subsequent differentiation to functionally mature and correctly selected T cells. While thymic epithelial cells are well characterized for their role in thymopoiesis, a comparably comprehensive analysis of the non-epithelial thymic stroma is lacking. Here we explore at single cell resolution the complex composition and dynamic changes that occur over time in the non-epithelial stromal compartment. We detail across different developmental stages in human and mouse thymus, and in an experimental model of Di George syndrome, the most common form of human thymic hypoplasia, the separate transcriptomes of mouse mesothelium, fibroblasts, neural crest cells, endothelial and vascular mural cells. The detected gene expression signatures identify novel stromal subtypes and relate their individual molecular profiles to separate differentiation trajectories and functions. Specifically, we demonstrate an abundance and unprecedented heterogeneity of diverse fibroblast subtypes that emerge at discrete developmental stages and vary in their expression of key regulatory signalling circuits and components of the extracellular matrix. Taken together, these findings highlight the dynamic complexity of the non-epithelial thymus stroma and link the cells’ specific gene expression profiles to separate instructive roles essential for normal thymus organogenesis and tissue maintenance. Teaser Single cell profiling of thymic stroma identifies a dynamic contribution from neural crest cells to the thymic mesenchyme. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要