谷歌浏览器插件
订阅小程序
在清言上使用

Cathelicidin-trypsin inhibitor loop conjugate represents a promising antibiotic candidate with protease stability

SCIENTIFIC REPORTS(2017)

引用 16|浏览7
暂无评分
摘要
Cathelicidins are regarded as promising antibiotics due to their capability against antibiotic-resistant bacteria without cytotoxicity. However, some concerns about the balance of cytotoxicity and antimicrobial activity, weak stability and enzymatic susceptibility sually restrict their therapeutic use. Here, we designed a series of shortened variants, Hc1~15, based on our previously characterized Hc-CATH. Hc3, the one with the best activity, after point mutation was engineered with a trypsin inhibitor loop, ORB-C, to obtain four hybrid peptides: H3TI, TIH3, H3TIF and TIH3F. All four except TIH3 were found possessing an appreciable profile of proteases inhibitory and antimicrobial characteristics without increase in cytotoxicity. Among them, TIH3F exhibited the most potent and broad-spectrum antimicrobial and anti-inflammatory activities. Fluorescence spectroscopy has demonstrated a quick induction of bacterial membrane permeability by TIH3F leading to the cell death, which also accounts for its fast anti-biofilm activity. Such mode of antimicrobial action was mainly attributed to peptides’ amphiphilic and helical structures determined by CD and homology modeling. Besides, TIH3F exhibited good tolerance to salt, serum, pH, and temperature, indicating a much better physiological stability in vitro than Hc3, Most importantly, in the case of resistance against proteases hydrolysis, current hybrid peptides displayed a remarkable enhancement than their original templates.
更多
查看译文
关键词
Biomaterials – proteins,Chemical modification,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要