谷歌浏览器插件
订阅小程序
在清言上使用

Analysis and Prospect of the Duplex Fuel Pellets of Lowi Type for Water-Cooled Reactors

Volume 1 Operations and Maintenance, Aging Management and Plant Upgrades Nuclear Fuel, Fuel Cycle, Reactor Physics and Transport Theory Plant Systems, Structures, Components and Materials I&ampC, Digital Controls, and Influence of Human Factors(2016)

引用 0|浏览0
暂无评分
摘要
The duplex pellets under a "Low-Interact" (LOWI) nuclear fuel design, which consist of an outer enriched annulus and a depleted or natural core, can provide lower center temperature and reduced probability of pellet-clad mechanical interact (PCMI). Analysis and experiments were done in 1970s to examine the benefits and cost of LOWI design for water-cooled reactors. Results showed that the additional economic cost of this design should not be neglected in spite of the benefits. However, due to the improvement of nuclear fuel fabrication technology in the past 30 years, the benefits of LOWI design become more significant, especially when the potential of other methods to elevate the power density and overcome the constraints on ramp rates in power reactors is running out. In order to evaluate the feasibility of deploying the LOWI fuel in commercial and research reactors, neutronics and thermal calculations are made to figure out the performance of duplex UO2 pellets in particular reactors. It is shown that the center temperature of pellet has been greatly reduced without any change on assembly and core geometry, which means the opportunity of less fission gas production, higher power density and more adequate safety margin. A mechanical analysis of a typical LOWI design is also done. The challenges on duplex pellet manufacture are also discussed. Several fabrication techniques are presented to show the potential of cutting the cost of pellet production.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要