谷歌浏览器插件
订阅小程序
在清言上使用

Suppressing Thermalization and Constructing Weak Solutions in Truncated Inviscid Equations of Hydrodynamics: Lessons from the Burgers Equation

Physical review research(2020)

引用 12|浏览3
暂无评分
摘要
Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection, thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible, three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing ground, a numerical recipe, named tyger purging, to arrest the onset of thermalization and hence recover the true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and numerically elusive thus far—of the Euler equation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要