Observations Of Atmospheric Aerosol And Cloud Using A Polarized Micropulse Lidar In Xi'An, China

ATMOSPHERE(2021)

引用 4|浏览6
暂无评分
摘要
A polarized micropulse lidar (P-MPL) employing a pulsed laser at 532 nm was developed by the Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences). The optomechanical structure, technical parameters, detection principle, overlap factor calculation method, and inversion methods of the atmospheric boundary layer (ABL) depth and depolarization ratio (DR) were introduced. Continuous observations using the P-MPL were carried out at Xi'an Meteorological Bureau, and the observation data were analyzed. In this study, we gleaned much information on aerosols and clouds, including the temporal and spatial variation of aerosols and clouds, aerosol extinction coefficient, DR, and the structure of ABL were obtained by the P-MPL. The variation of aerosols and clouds before and after a short rainfall was analyzed by combining time-height-indication (THI) of range corrected signal (RCS) and DR was obtained by the P-MPL with profiles of potential temperature (PT) and relative humidity (RH) detected by GTS1 Digital Radiosonde. Then, the characteristics of tropopause cirrus cloud were discussed using the data of DR, PT, and RH. Finally, a haze process from January 1st to January 5th was studied by using aerosol extinction coefficients obtained by the P-MPL, PT, and RH profiles measured by GTS1 Digital Radiosonde and the time-varying of PM2.5 and PM10 observed by ambient air quality monitor. The source of the haze was simulated by using the NOAA HYSPLIT Trajectory Model.
更多
查看译文
关键词
micropulse lidar, depolarization ratio, aerosol, cloud, atmospheric boundary layer, haze
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要