Copper-Alloy Catalysts: Structural Characterization And Catalytic Synergies

CATALYSIS SCIENCE & TECHNOLOGY(2021)

引用 14|浏览1
暂无评分
摘要
Catalysis plays a significant role in most processes of the chemical industry, especially in the emerging areas of sustainable energy and clean environment. A major challenge is the design of catalysts with the desired synergies in terms of activity, selectivity, stability, and cost. New insights into many fundamental questions related to the challenge have sparked a surge of interest in recent years in the area of exploring copper-based alloy catalysts. In this review, the most recent progress in the explorations of copper-alloy catalysts will be highlighted, with a focus on the structural and mechanistic characterizations of the catalysts in different catalytic reactions. The fundamental understanding of the detailed catalytic synergies of the catalysts for the targeted heterogeneous catalytic reactions depends strongly on the utilization of various analytical techniques for the characterization. Significant progress has been made in utilizing advanced techniques, both ex situ and in situ/operando characterizations, demonstrating the abilities to gain atomic/molecular level insights into the morphological, structural, electronic and catalytic properties of copper alloy catalysts, especially the dynamic surface active sites under the reaction conditions or during the catalytic processes. The focus on structural characterization in this review serves as a forum for discussions on structural and mechanistic details, which should provide useful information for identifying challenges and opportunities in future research and development of copper-alloy catalysts.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要