Experimental Demonstration Of Coupled Multi-Peak Bragg Coherent Diffraction Imaging With Genetic Algorithms

PHYSICAL REVIEW B(2021)

引用 3|浏览7
暂无评分
摘要
Bragg coherent diffraction imaging has the potential to provide significant insight into the structure-properties relationship for crystalline materials by imaging, with nanoscale resolution, three-dimensional strain fields within individual grains and nanoparticles. The capability of present-day synchrotrons to locate and measure a multiplicity of Bragg reflections from a single grain makes it possible to recover the full strain tensor with nanometer resolution. Recent methods for coupling reconstructions from several peaks to determine the strain tensor have been developed and applied to synthetic data, but have not been applied to experimental data. Here, using a coupled genetic reconstruction algorithm, we reconstruct an experimental data set and demonstrate improvements in the ability to resolve vector-valued displacement fields internal to the particle as compared to what is achieved with a noncoupled approach. The coupled approach developed in this work was also validated on simulated data sets. In both simulated and experimental data, reconstructions from our coupled Bragg peak algorithm show improvements over the noncoupled independent reconstruction method of 5% in terms of accuracy and 53% in terms of consistency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要