Growth Behavior And Kinetics Of Austenite Grain In Low-Carbon High-Strength Steel With Copper

MATERIALS RESEARCH EXPRESS(2021)

引用 2|浏览2
暂无评分
摘要
A low-carbon high-strength steel with copper has better antibiological corrosion property, more widely used in large marine projects and ships. In this study, an austenite grain growth model of a low-carbon ship plate steel with 1.6Cu was established by using Sellars equation at 900 degrees C-1200 degrees C and different holding times (30-120 min) to reveal its kinetics. The pinning effect of grain boundary precipitates was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and a quantitative relationship between the solid solution and precipitation behavior of copper bearing precipitates in experimental steel and austenite grain growth was analyzed. The experimental results show that the austenite grains grow slowly, and the grains are fine grains when the heating temperature is below 1000 degrees C and the transition temperature of rapid grain coarsening is 1000 degrees C. The relative error of dynamic model can be controlled within 8.5%. During heat treatment, Cu atoms are segregated at the grain boundary to form a copper-rich region, providing a coating effect on the carbide and grain boundary and hindering the growth of grains. With the increase in temperature, the diffusion rate of copper atoms increases, and the precipitates containing copper are rapidly dissolved into austenite. Therefore, the pinning effect is weakened, and the austenite grains grow rapidly.
更多
查看译文
关键词
low-carbon high-strength steel with copper, austenite grain growth, copper bearing precipitates, solid solution
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要