谷歌浏览器插件
订阅小程序
在清言上使用

Low-temperature and Effective Ex Situ Group V Doping for Efficient Polycrystalline CdSeTe Solar Cells

Nature energy(2021)

引用 26|浏览11
暂无评分
摘要
CdTe solar cell technology is one of the lowest-cost methods of generating electricity in the solar industry, benefiting from fast CdTe absorber deposition, CdCl2 treatment and Cu doping. However, Cu doping has low photovoltage and issues with instability. Doping group V elements into CdTe is therefore a promising route to address these challenges. Although high-temperature in situ group V doped CdSeTe devices have demonstrated efficiencies exceeding 20%, they face obstacles including post-deposition doping activation processes, short carrier lifetimes and low activation ratios. Here, we demonstrate low-temperature and effective ex situ group V doping for CdSeTe solar cells using group V chlorides. For AsCl3 doped CdSeTe solar cells, the dopant activation ratio can be 5.88%, hole densities reach >2 × 1015 cm−3 and carrier lifetime is longer than 20 ns. Thus, ex situ As doped CdSeTe solar cells show open-circuit voltages ~863 mV, compared to the highest open-circuit voltage of 852 mV for Cu doped CdSeTe solar cells. Doping CdTe solar cells with group V elements could overcome the limitations in voltage output and device stability of copper doping, yet implementation remains challenging. Now, Li et al. have devised an ex situ doping approach that is based on group V chloride solutions and low-temperature annealing.
更多
查看译文
关键词
Materials for energy and catalysis,Solar cells,Energy,general,Energy Policy,Economics and Management,Energy Systems,Energy Storage,Renewable and Green Energy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要