Biodegradable Calcium Phosphate Nanotheranostics With Tumor-Specific Activatable Cascade Catalytic Reactions-Augmented Photodynamic Therapy

ADVANCED FUNCTIONAL MATERIALS(2021)

引用 112|浏览22
暂无评分
摘要
Photodynamic therapy (PDT) is exploited as a promising strategy for cancer treatment. However, the hypoxic solid tumor and the lack of tumor-specific photosensitizer administration hinder the further application of oxygen (O-2)-dependent PDT. In this study, a biodegradable and O-2 self-supplying nanoplatform for tumor microenvironment (TME)-specific activatable cascade catalytic reactions-augmented PDT is reported. The nanoplatform (named GMCD) is constructed by coloading catalase (CAT) and sinoporphyrin sodium (DVDMS) in the manganese (Mn)-doped calcium phosphate mineralized glucose oxidase (GOx) nanoparticles. The GMCD can effectively accumulate in tumor sites to achieve an "off to on" fluorescence transduction and a TME-activatable magnetic resonance imaging. After internalization into cancer cells, the endogenous hydrogen peroxide (H2O2) can be catalyzed to generate O-2 by CAT, which not only promotes GOx catalytic reaction to consume more intratumoral glucose, but also alleviates tumor hypoxia and enhances the production of cytotoxic singlet oxygen from light-triggered DVDMS. Moreover, the H2O2 generated by GOx-catalysis can be converted into highly toxic hydroxyl radicals by Mn2+-mediated Fenton-like reaction, further amplifying the oxidative damage of cancer cells. As a result, GMCD displays superior therapeutic effects on 4T1-tumor bearing mice by a long term cascade catalytic reactions augmented PDT.
更多
查看译文
关键词
biomineralization, calcium phosphate nanotheranostics, glucose oxidase, oxygen self-supplying, photodynamic therapy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要