In Silico Characterization of Toxin-Antitoxin Systems in Campylobacter Isolates Recovered from Food Sources and Sporadic Human Illness

GENES(2021)

引用 1|浏览4
暂无评分
摘要
Campylobacter spp. represents the most common cause of gastroenteritis worldwide with the potential to cause serious sequelae. The ability of Campylobacter to survive stressful environmental conditions has been directly linked with food-borne illness. Toxin-antitoxin (TA) modules play an important role as defense systems against antimicrobial agents and are considered an invaluable strategy harnessed by bacterial pathogens to survive in stressful environments. Although TA modules have been extensively studied in model organisms such as Escherichia coli K12, the TA landscape in Campylobacter remains largely unexplored. Therefore, in this study, a comprehensive in silico screen of 111 Campylobacter (90 C. jejuni and 21 C. coli) isolates recovered from different food and clinical sources was performed. We identified 10 type II TA systems belonging to four TA families predicted in Campylobacter genomes. Furthermore, there was a significant association between the clonal population structure and distribution of TA modules; more specifically, most (12/13) of the Campylobacter isolates belonging to ST-21 isolates possess HicB-HicA TA modules. Finally, we observed a high degree of shared synteny among isolates bearing certain TA systems or even coexisting pairs of TA systems. Collectively, these findings provide useful insights about the distribution of TA modules in a heterogeneous pool of Campylobacter isolates from different sources, thus developing a better understanding regarding the mechanisms by which these pathogens survive stressful environmental conditions, which will further aid in the future designing of more targeted antimicrobials.
更多
查看译文
关键词
toxin,antitoxin,Campylobacter,MLST,synteny,in silico,genome,domain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要