Lattice Dynamics And Thermodynamic Properties Of Bulk Phases And Monolayers Of Gate And Inte: A Comparison From First-Principles Calculations

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY(2021)

引用 10|浏览7
暂无评分
摘要
The hybrid density functional theory was used to study the structural, vibrational, and thermodynamic properties of stable and hypothetical bulk GaTe and InTe polymorphs, as well as their monolayer counterparts. Criteria based on the vibrational frequencies have been proposed to distinguish between different monolayer structures. Heat capacity, entropy, and Helmholtz free energy have been calculated by summing the vibrational contributions over the corresponding Brillouin zone. The relative stability of the considered systems has been estimated at different temperatures using the obtained Helmholtz free energy. Both the total energy and the Helmholtz free energy calculations confirmed that a free-standing monolayer originated from the monoclinic GaTe phase is less stable than its hexagonal analogs. It was also found that the temperature increase favors monolayer formation in the case of GaTe, but prevents it in the case of InTe.
更多
查看译文
关键词
Density functional calculations, Monolayers, Phonon dispersion, Polymorphism, Thermodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要