Experimental Investigation Of Selective Laser Melting Parameters For Higher Surface Quality And Microhardness Properties: Taguchi And Super Ranking Concept Approaches

JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T(2021)

引用 19|浏览1
暂无评分
摘要
In the current study, near net-shaped selective laser melting (SLM) technology was employed to build nickel-based superalloy Inconel 625 (IN625) parts with good quality. Taguchi method was employed to formulate a systematical study, analyze, and optimize the influencing factors, i.e., laser power (LP), scan speed (SS) and hatch distance (HD) on the resulting micro-hardness (MH) and surface roughness (SR) of the build samples. Scanning electron microscope (SEM) and X-ray diffraction analysis were carried out to characterize the powder morphology (spherical shaped particle possessing the size of 35 +/- 6 mm) and the surface of the build samples. Laser power was the most contributing factor on the analyzed parameters (MH and SR), followed by the scanning speed and hatch distance. Taguchi determined optimal condition (MH: LP = 270 W, SS = 800 mm/s, HD = 0.08 mm; SR: LP = 270 W, SS = 800 mm/s, HD = 0.08 mm) which resulted in higher microhardness of 416 HV and lower surface roughness of 2.82 mm. Higher MH was attributed to the minimal porosity, while the uniform smooth surface of the build samples resulted in low SR as evident from the SEM images and surface texture analysis. Super ranking concept (SRC) was used to optimize the MH and SR simultaneously, by determining a single optimal condition (LP = 300 W, SS = 600 mm/s, HD = 0.10 mm). The obtained optimal condition resulted in a MH of 382 HV, and a SR of 3.92 mm. The results of optimal conditions are validated subjected to SEM morphologies. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
更多
查看译文
关键词
Selective laser melting (SLM), Surface roughness (SR), Inconel 625, Microhardness, Taguchi method, Super ranking concept (SRC)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要