Nitrogen Recovery from Clear-Cut Forest Runoff Using Biochar: Adsorption–Desorption Dynamics Affected by Water Nitrogen Concentration

E. Kakaei Lafdani,Ari Laurén, Jovana Cvetkovic,Jukka Pumpanen,Taija Saarela,Marjo Palviainen

WATER AIR AND SOIL POLLUTION(2021)

引用 2|浏览0
暂无评分
摘要
Forest regeneration operations increase the concentration of nitrogen (N) in watercourses especially outside the growing season when traditional biological water protection methods are inefficient. Biochar adsorption-based water treatment could be a solution for nutrient retention. We studied the total nitrogen (TN) and nitrate–nitrogen (NO 3 − –N) adsorption–desorption properties of spruce and birch biochar. The adsorption test was performed under four different initial concentrations of TN (1, 2, 3, and 4 mg L −1 ) using forest runoff water collected from ditch drains of boreal harvested peatland. The results showed that the TN adsorption amount increased linearly from the lowest to the highest concentration. The maximum adsorption capacity was 2.4 and 3.2 times greater in the highest concentration (4 mg L −1 ) compared to the lowest concentration (1 mg L −1 ) in spruce and birch biochar, respectively. The NO 3 − –N adsorption amount of birch biochar increased linearly from 0 to 0.15 mg NO 3 − –N g biochar −1 when the initial concentration of NO 3 − –N increased from 0.2 to 1.4 mg L −1 . However, in spruce biochar, the initial concentration did not affect NO 3 − –N adsorption amount. The results indicate that concentration significantly affects the biochar’s capacity to adsorb N from water. The desorption test was performed by adding biochar extracted from the adsorption test into the forest runoff water with low TN concentration (0.2 or 0.35 mg L −1 ). The desorption results showed that desorption was negligibly small, and it was dependent on the TN concentration for birch biochar. Therefore, biochar can be a complementary method supporting water purification in peatland areas.
更多
查看译文
关键词
Adsorption–desorption capacity,Forest regeneration,Nutrient retention,Peatland,Water protection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要