Origin and preservation conditions of organic matter in the Mozambique Channel: Evidence for widespread oxidation processes in the deep-water domains

Marine Geology(2021)

引用 1|浏览3
暂无评分
摘要
The Mozambique and Madagascar margins present major rivers that are responsible for the discharge of large amounts of terrestrial organic matter (OM) which can influence carbon cycling in marine environments. Therefore, the Mozambique channel represents a unique case to study the fate of the organic carbon in deep-water domains. Using a new and extensive data set of sedimentary OM collected from sediment traps, seafloor sediments and core sediments, we address the origin of the OM that is transported and deposited in the Mozambique Channel, its degradation state and preservation conditions. A Rock-Eval 6 survey allowed us to characterize the origin and amount of OM from shallow to deep-water turbidite systems, between 500 and 4400 m water depth. Rock-Eval 6 performed on suspended sediments within particle traps at 47 m above the seabed show that the OM is transported into the deep-water domain with relatively high TOC (between 1.5 and 2.5%). However, the OM is largely oxidized close to the water-sediment interface (Oxygen Index >300 mg CO2/g TOC). Seafloor sediments sampled to a maximum depth of 40 cm show lower TOC values compared to those collected from particle traps suggesting that the degradation of the OM is mainly active at the water-sediment interface. Small concentrations of OM are preserved within the recent sediments of the distal area of the Zambezi turbidite system below 2500 m water depth (TOC < 0.5%). Rock-Eval results show that core sediments from the Majunga slope (NW margin of Madagascar) and the Zambezi slope (Mozambique margin) contain the highest concentration of terrestrial OM (TOC between 1 and 2%). However, the OM within core sediments from the deep-water domain is largely oxidized and degraded, probably due to the conjugate effect of low sediment accumulation rates (SARs) and high permeabilities of the coarse-grained sediments. Consequently, the deep-water domain of the Mozambique Channel does not seem to be an important sink of terrestrial OM. This process is reinforced by important bottom water currents which induce the remobilization and transport of seafloor sediments that lead to higher oxygen exposure time in the uppermost centimeters of sediments.
更多
查看译文
关键词
Organic matter,Transport,Preservation,Oxidation,Mozambique Channel,Rock-Eval,Scanning Electron Microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要