谷歌浏览器插件
订阅小程序
在清言上使用

Design and Construction of a Three‐dimensional Electrode with Biomass‐derived Carbon Current Collector and Water‐soluble Binder for High‐sulfur‐loading Lithium‐sulfur Batteries

Carbon energy(2020)

引用 27|浏览7
暂无评分
摘要
AbstractLithium‐sulfur batteries attract lots of attention due to their high specific capacity, low cost, and environmental friendliness. However, the low sulfur utilization and short cycle life extremely hinder their application. Herein, we design and fabricate a three‐dimensional electrode by a simple filtration method to achieve a high‐sulfur loading. Biomass porous carbon is employed as a current collector, which not only enhances the electronic transport but also effectively limits the volume expansion of the active material. Meanwhile, an optimized carboxymethyl cellulose binder is chosen. The chemical bonding restricts the shuttle effect, leading to improved electrochemical performance. Under the ultrahigh sulfur load of 28 mg/cm2, the high capacity of 18 mAh/cm2 is still maintained, and stable cycling performance is obtained. This study demonstrates a viable strategy to develop promising lithium‐sulfur batteries with a three‐dimensional electrode, which promotes sulfur loading and electrochemical performance.
更多
查看译文
关键词
3D structure,biomass carbon,high-load sulfur,lithium-sulfur battery,water-soluble binder
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要