Improved Joint Subcarrier And Power Allocation To Enhance The Throughputs And User Fairness In Indoor Ofdm-Noma Vlc Systems

OPTICS EXPRESS(2021)

引用 7|浏览4
暂无评分
摘要
Orthogonal frequency division multiplexing non-orthogonal multiple access (OFDM-NOMA) is a promising multi-user access scheme in indoor visible light communication (VLC) systems. In this paper, we propose three novel joint subcarrier and power allocation algorithms in OFDM-NOMA-VLC to improve the throughputs and/or user fairness. These three proposed algorithms address the requirements in fairness-throughput-balanced (FTB), fairness-first (FF), and throughput-first (TF) scenarios, respectively. All of them improve the objective function in the previous joint allocation algorithm and ensure the fairness of users in terms of their overall throughput, rather than that in every subcarrier that is tight and redundant. The designs using the proposed algorithms also exhibit reduced peak-to-average power ratios (PAPRs) and so the average signal power can be better used to further enhance the throughput when the system is limited by the signal peak power. Simulations verify that the proposed algorithms are superior to the previous joint subcarrier and power allocation algorithm as well as the conventional fixed power allocation (FPA) and gain ratio power allocation (GRPA) algorithms. The performance improvement of the proposed algorithms is particularly greater for a larger number of multiplexed users per subcarrier or a larger number of OFDM subcarriers, under which the PAPRs of designs using conventional algorithms are higher. When the total user number, the number of the multiplexed users per subcarrier, and the number of subcarriers are 5, 2, and 16, respectively, the throughputs of the three proposed algorithms are 62.17%, 53.35%, and 67.25% higher than the conventional joint allocation algorithm, while the user fairness is improved by 4.64%, 7.87%, and degraded by 20.71%, respectively. Therefore, the three proposed algorithms can address the requirements in FTB, FF, and TF scenarios, respectively. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要