Aqueous Microlenses for Localized Collection and Enhanced Raman Spectroscopy of Gaseous Molecules

ADVANCED OPTICAL MATERIALS(2021)

引用 2|浏览1
暂无评分
摘要
Raman spectroscopy of gaseous molecules has been challenging, requiring complicated experimental procedures and peripheral devices for concentrating the analytes. Here, Raman spectroscopy of gaseous molecules at parts-per-billion (ppb) levels is demonstrated using aqueous microlenses of LiCl solution that spontaneously absorb water-soluble gas molecules from the environment. The lenses are easily formed by filling the microwells of an elastomeric stamp with an aqueous solution of LiCl and stamping onto a substrate. Because LiCl is hygroscopic, the aqueous lenses maintain their liquid states under various ambient conditions. Gaseous molecules in the air dissolve in the aqueous microlens and can be identified based on their Raman fingerprints. Lowering the humidity causes the aqueous lens to transition into a salt crystal, while preserving the dissolved molecules within the crystal and facilitating the long-term storage and analysis of gaseous analytes. By forming the aqueous microlenses on a surface-enhanced Raman scattering (SERS) substrate, 800 ppb dimethyl methylphosphonate, a nerve agent simulant, is detected in a collection time of only 5 s. Aqueous microlenses that are responsive to the chemical environment are useful for analyzing various water-soluble gaseous molecules and therefore have broad implications for healthcare, food safety, and environmental-monitoring applications.
更多
查看译文
关键词
aqueous lenses, gas identification, hygroscopicity, microlens arrays, Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要