A Ti/Pt/Co Multilayer Stack For Transfer Function Based Magnetic Force Microscopy Calibrations

MAGNETOCHEMISTRY(2021)

引用 3|浏览23
暂无评分
摘要
Magnetic force microscopy (MFM) is a widespread technique for imaging magnetic structures with a resolution of some 10 nanometers. MFM can be calibrated to obtain quantitative (qMFM) spatially resolved magnetization data in units of A/m by determining the calibrated point spread function of the instrument, its instrument calibration function (ICF), from a measurement of a well-known reference sample. Beyond quantifying the MFM data, a deconvolution of the MFM image data with the ICF also corrects the smearing caused by the finite width of the MFM tip stray field distribution. However, the quality of the calibration depends critically on the calculability of the magnetization distribution of the reference sample. Here, we discuss a Ti/Pt/Co multilayer stack that shows a stripe domain pattern as a suitable reference material. A precise control of the fabrication process, combined with a characterization of the sample micromagnetic parameters, allows reliable calculation of the sample's magnetic stray field, proven by a very good agreement between micromagnetic simulations and qMFM measurements. A calibrated qMFM measurement using the Ti/Pt/Co stack as a reference sample is shown and validated, and the application area for quantitative MFM measurements calibrated with the Ti/Pt/Co stack is discussed.
更多
查看译文
关键词
magnetic force microscopy, calibration, reference samples, micromagnetism, metrology for magnetism, magnetic multilayers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要