Initial Results From High-Field-Side Transient Chi Start-Up On Quest

PLASMA AND FUSION RESEARCH(2021)

引用 2|浏览50
暂无评分
摘要
Transient coaxial helicity injection (t-CHI) current start-up using a new design simple electrode configuration has been implemented on the QUEST. Discharges injected from the low field side (LFS) and from the high field side (HFS) were examined. Compared to the LFS injection case, the HFS injection has the advantages of providing access to a higher toroidal field and better controlling the location of the injector flux footprint location. Although the present PF coils on QUEST are not well positioned to form the injector flux on the HFS injector region and there has been a frequent occurrence of the spurious arcs, known as absorber arcs, HFS injection has shown flux evolution in a shape that is suitable for the formation of closed flux surfaces. The discharges were improved by installing an in-vessel-coil and adding a new cylindrical electrode to the existing CHI electrode. The results show that the new cylindrical electrode allowed the flux to evolve stably while allowing both the inner and the outer injector flux footprint to remain in the vicinity of the cylindrical electrode. This configuration which inherently generates a narrow injector flux footprint width resulted in discharges that strongly suggested the persistence of the CHI generated plasma after the injector current was reduced to zero. These studies have informed us of the need to improve the CHI gas injection system so that the absorber arcs could be better controlled in the HFS injection configuration. (C) 2021 The Japan Society of Plasma Science and Nuclear Fusion Research
更多
查看译文
关键词
CHI, non-inductive current drive, spherical tokamak, magnetic reconnection, ECH
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要