Beam-induced surface modifications as a critical source of heat loads in the Large Hadron Collider

COMMUNICATIONS PHYSICS(2021)

引用 5|浏览13
暂无评分
摘要
Beam-induced heat loads on the cryogenic regions of the Large Hadron Collider (LHC) exhibit a wide and unexpected dispersion along the accelerator, with potential impact on the performance of its High-Luminosity upgrade. Studies related the heat load source to the avalanche multiplication of electrons at the surface of the beam vacuum chamber, a phenomenon known as electron could build-up. Here, we demonstrate that the topmost copper surface of beam pipes extracted from a low heat load region of the LHC consists of native Cu 2 O, while the pipe surface from a high heat load region had been oxidized to CuO during LHC operation and maintenance cycles. Experiments show that this process increases the secondary electron yield and inhibits efficient surface conditioning, thus enhancing the electron cloud intensity during LHC operation. This study relates the abnormal LHC heat loads to beam-induced surface modifications of its beam pipes, enabling the development of curative solutions to overcome this critical limitation.
更多
查看译文
关键词
Surfaces,interfaces and thin films,Physics,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要