Functional Characteristics And Regulated Expression Of Alternatively Spliced Tissue Factor: An Update

CANCERS(2021)

引用 3|浏览8
暂无评分
摘要
Simple Summary Alternatively spliced tissue factor (asTF) is a naturally occurring isoform of tissue factor (TF) generated via the omission of exon 5 during the processing of TF's primary transcript. In human and mouse, asTF protein features a unique C-terminus that lacks a transmembrane domain, rendering it soluble. asTF protein is able to associate with a subset on integrins on cell surfaces, which can trigger outside-in signaling programs in a variety of cell types. In this review, we discuss recent findings on asTF's proto-oncogenic effects, regulatory mechanisms enabling asTF's biosynthesis, and asTF's potential as a biomarker and therapeutic target. In human and mouse, alternative splicing of tissue factor's primary transcript yields two mRNA species: one features all six TF exons and encodes full-length tissue factor (flTF), and the other lacks exon 5 and encodes alternatively spliced tissue factor (asTF). flTF, which is oftentimes referred to as "TF", is an integral membrane glycoprotein due to the presence of an alpha-helical domain in its C-terminus, while asTF is soluble due to the frameshift resulting from the joining of exon 4 directly to exon 6. In this review, we focus on asTF-the more recently discovered isoform of TF that appears to significantly contribute to the pathobiology of several solid malignancies. There is currently a consensus in the field that asTF, while dispensable to normal hemostasis, can activate a subset of integrins on benign and malignant cells and promote outside-in signaling eliciting angiogenesis; cancer cell proliferation, migration, and invasion; and monocyte recruitment. We provide a general overview of the pioneering, as well as more recent, asTF research; discuss the current concepts of how asTF contributes to cancer progression; and open a conversation about the emerging utility of asTF as a biomarker and a therapeutic target.
更多
查看译文
关键词
tissue factor, alternative splicing, integrins, pancreatic ductal adenocarcinoma, breast cancer, biomarker, anti-cancer biologics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要