Photoelectrochemical Oxidation In Ambient Conditions Using Earth-Abundant Hematite Anode: A Green Route For The Synthesis Of Biobased Polymer Building Blocks

CATALYSTS(2021)

引用 5|浏览11
暂无评分
摘要
This study demonstrates the use of a photoelectrochemical device comprising earth-abundant hematite photoanode for the oxidation of 5-hydroxymethylfurfural (5-HMF), a versatile bio-based platform chemical, under ambient conditions in the presence of an electron mediator. The results obtained in this study showed that the hematite photoanode, upon doping with fluorine, can oxidize water even at lower pH (4.5 and 9.0). For 5-HMF oxidation, three different pH conditions were investigated, and complete oxidation to 2,5-furandicarboxylic acid (FDCA) via 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) was achieved at pH above 12. At lower pH, the oxidation followed another route via 2,5-diformylfuran (DFF), yielding 5-formyl-2-furancarboxylic acid (FFCA) as the main product. Using the oxidized intermediates as substrates showed DFF to be most efficiently oxidized to FDCA. We also show that, at pH 4.5, the addition of the laccase enzyme promoted the oxidation of 5-HMF to FFCA.
更多
查看译文
关键词
photoelectrochemical cell, earth-abundant hematite photoanode, bio-based chemicals, 5-HMF oxidation, 2, 5-furandicarboxylic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要