Tight Constraints On Einstein-Dilation-Gauss-Bonnet Gravity From Gw190412 And Gw190814

PHYSICAL REVIEW D(2021)

引用 17|浏览2
暂无评分
摘要
Gravitational-wave (GW) data can be used to test general relativity in the highly nonlinear and strong field regime. Modified gravity theories such as Einstein-dilation-Gauss-Bonnet and dynamical Chern-Simons can be tested with the additional GW signals detected in the first half of the third observing run of Advanced LIGO/Virgo. Specifically, we analyze gravitational-wave data of GW190412 and GW190814 to place constraints on the parameters of these two theories. Our results indicate that dynamical Chern-Simons gravity remains unconstrained. For Einstein-dilation-Gauss-Bonnet gravity, we find root alpha(EdGB)less than or similar to 0.40 km when considering GW190814 data, assuming it is a black hole binary. Such a constraint are improved by a factor of approximately 10 in comparison to that set by the first Gravitational-Wave Transient Catalog events.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要