谷歌浏览器插件
订阅小程序
在清言上使用

Enhanced Self-Assembly and Mechanical Properties of Cellulose-Based Triblock Copolymers: Comparisons with Amylose-Based Triblock Copolymers

ACS sustainable chemistry & engineering(2021)

引用 3|浏览11
暂无评分
摘要
Herein, we compared the microphase-separation behavior and mechanical properties of cellulose- and amylose-based block copolymers (BCPs). Various cellooligosaccharide triacetate-b-poly(delta-decanolactone)-b-cellooligosaccharide triacetates (AcCel(n)-b-PDL-b-AcCel(n)s), which are cellulose-based ABA-type BCPs, with PDL molecular weights of approximately 5, 10, and 20 kg mol(-1) and PDL volume fractions of 0.65, 0.77, and 0.87, were synthesized from alpha,omega-diazido-end-functionalized PDLs and propargyl-end-functionalized cellooligosaccharide triacetates via click chemistry. We adopted the cellodextrin-phosphorylase-mediated oligomerization of alpha-D-glucose-1-phosphase in the presence of a propargyl-end-functionalized cellobiose primer to synthesize the functional cellooligosaccharide segment. The maltooligosaccharide triacetate-b-poly(delta-decanolactone)-b-maltooligosaccharide triacetate (AcMal(n)-b-PDL-b-AcMal(n)s) amylose counterparts were also synthesized in a similar manner. Small-angle X-ray scattering experiments and atomic force microscopy revealed that AcCel(n)-b-PDL-b-AcCel(n)s are more likely to microphase-separate into ordered nanostructures compared to AcMal(n)-b-PDL-b-AcMal(n)s, despite their comparable chemical compositions and molecular weights. Furthermore, AcCel(n)-b-PDL-b-AcCel(n)s exhibited significantly superior mechanical performance compared to their amylose counterparts under tensile testing, with Young's modulus and stress at break of AcCel(n)-b-PDL10k-b-AcCel(n) being 2.3 and 1.8 times higher, respectively, than those of AcMal(n)-b-PDL10k-b-AcMal(n). The enhanced microphase-separation and mechanical properties of AcCel(n)-b-PDL-b-AcCel(n)s were found to be attributable to the stiffness and crystalline nature of the AcCel(n) segments. These results demonstrate the advantages of using cellulose derivatives to synthesize novel biofunctional materials.
更多
查看译文
关键词
self-assembly,block copolymers,amylose,cellulose,sustainable elastomers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要